Online Llama 4 Chat
Discover free online Llama 4 Maverick chat or Scout, insightful AI education, and download local large model codes.

Free Online Llama 4 Chat
Llama 4 Maverick is a cutting-edge large language model (LLM) developed by Meta AI, designed to advance natural language understanding and generation across multiple languages. With 70 billion parameters, Llama 4 Scout offers enhanced performance and efficiency, making it a valuable tool for both commercial and research applications.

LLaMA 4 Scout is an updated version of the previous LLaMA 3.2 405B model, building upon its core architecture while introducing several improvements. While both versions utilize Meta AI’s advanced natural language processing technology, LLaMA 4 Scout offers enhanced response accuracy, faster processing speeds, and better adaptability to user input. Additionally, 4 Maverick includes improved learning capabilities, allowing it to provide more contextually relevant answers compared to 3.2 405B, making it a more refined and user-friendly tool for personal, educational, and business applications.
Lhama Online Grátis 3.3 Chat
Lhama Online Grátis 3.2 Chat
Lhama Online Grátis 3.1 Chat
Mais ferramentas de IA Llama

Lhama Online Grátis 3.1 405B Chat
Experimente o poder do Chat Online Llama 3.1 405B GRATUITO: A sua porta de entrada para capacidades e conhecimentos avançados de IA.
Conversar agora
descarregar o modelo Llama 3.1
Ponha as mãos no mais recente modelo Llama 3.1 405B gratuitamente.
DescarregarBase de conhecimentos Llama 3.2
O seu recurso de referência para guias de utilização e materiais educativos.
Saiba maisFrequently Asked Questions for Llama 4
Q1: What is Llama 4 Maverick?
A1: Llama 4 Maverick is a state-of-the-art large language model (LLM) developed by Meta AI, designed for natural language understanding, text generation, and multilingual support.
Q2: How can I access Llama 4 Maverick for free?
A2: You can use Llama 4 Maverick for free on platforms like llamaai.onlineque oferece uma interface de conversação fácil de utilizar.
Q3: Does Llama 4 Mavericksupport multiple languages?
A3: Yes, Llama 4 Maverick is trained on multiple languages, including English, Spanish, French, German, Portuguese, Hindi, and more.
Q4: How does Llama 4 Maverick compare to ChatGPT?
A4: Llama 4 competes with models like ChatGPT by offering advanced AI-powered responses, multilingual support, and open-source accessibility.
Q5: What makes Llama 4 better than previous versions?
A5: Llama 4 improves on previous versions with dados de formação melhorados, melhores capacidades de raciocínio e desempenho mais eficiente.
Q6: Can I use Llama 4 Maverick for professional writing?
A6: Yes, Llama 4 Maverick is an excellent tool for content creation, blog writing, SEO optimization, and more.
Q7: Is Llama 4 Maverick free for commercial use?
A7: While Llama 4 is open-source, some usage restrictions may apply. Check the termos oficiais de licenciamento antes de o utilizar comercialmente.
Q8: What kind of AI tasks can Llama 4 Maverick handle?
A8: Llama 4 excels at geração de texto, tradução, resumo, escrita criativa e IA de conversação.
Q9: How do I integrate Llama 4 Maverick into my applications?
A9: Developers can integrate Llama 4 using machine learning frameworks like Transformers do Hugging Face.
Q10: Does Llama 4 Maverick require powerful hardware?
A10: Executar a Llama 3.3 localmente requer GPUs de alto desempenhomas soluções baseadas na nuvem como llamaai.online permitem-lhe utilizá-lo sem hardware dispendioso.
Q11: Can Llama 4 Maverick write code?
A11: Yes, Llama 4 can generate and debug code in Python, JavaScript, Java, C++ e outras linguagens de programação.
Q12: How accurate is Llama 4?
A12: Llama 4 has been trained on a grande conjunto de dados para uma elevada precisão, mas verifique sempre as informações para aplicações críticas.
Q13: Can I fine-tune Llama 4 Maverick for specific tasks?
A13: Yes, advanced users can fine-tune Llama 4 on custom datasets for specialized applications.
Q14: Is there a limit to how much I can use Llama 4 Maverick?
A14: Plataformas como llamaai.online podem ter limites de utilização para garantir um acesso equitativo a todos os utilizadores.
Q15: Does Llama 4 Scout have ethical safeguards?
A15: Sim, a Meta AI implementou moderação de conteúdos e salvaguardas para evitar a utilização indevida.
Q16: Can Llama 4 Scout generate images?
A16: No, Llama 4 Scout is a text-based AI model. For image generation, consider models like DALL-E ou Difusão Estável.
Q17: How can I improve responses from Llama 4 Scout?
A17: Utilizar avisos claros e pormenorizados melhora a qualidade das respostas. Para obter melhores resultados, experimente diferentes solicitações.
Q18: Is Llama 4 Scout available as an API?
A18: Sim, os programadores podem utilizar o Llama 4 API para aplicações baseadas em IA.
Q19: Can Llama 4 Scout be used for chatbots?
A19: Absolutely! Llama 4 Scout is a great choice for Chatbots de IA, assistentes virtuais e aplicações de apoio ao cliente.
Q20: Where can I stay updated on Llama 4 Scout?
A20: Seguir o Meta AI's canais oficiais e visitar llamaai.online para actualizações e debates na comunidade.

Latest Llama 4 News

Llama 3 VS Gemini: uma comparação exaustiva de ferramentas de codificação de IA

Llama 3 vs ChatGPT: Uma comparação abrangente de ferramentas de codificação de IA

Como treinar um modelo LLaMA 3: Um guia completo

Llama 3.1 405B VS Claude 3.5 Soneto

Llama 3.1 405B VS Gemma 2: Uma comparação exaustiva

Llama 3.1 405B vs GPT-4o: Uma comparação exaustiva
Online Llama 4 Chat: An In-depth Guide
LLaMA 4 is the latest AI model developed by Meta AI, offering users free online chat capabilities. This technology represents a leap in natural language processing and interaction, providing advanced responses to a wide array of user queries.
What is Llama 4 Maverick?
Released on December 6, 2024, Llama 4 Maverick is a state-of-the-art LLM that builds upon its predecessors by incorporating advanced training techniques and a diverse dataset comprising over 15 trillion tokens. This extensive training enables Llama 4 to excel in various natural language processing tasks, including text generation, translation, and comprehension. The model supports multiple languages, such as English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai, catering to a global user base.
How to Use Llama 4 Maverick
Accessing and utilizing Llama 4 Maverick is straightforward, especially through platforms like llamaai.online, which offer free online chat interfaces powered by Llama 4 Maverick. These platforms provide an intuitive environment for users to interact with the model without the need for extensive technical knowledge.
For developers interested in integrating Llama 3.3 into their applications, the model is compatible with popular machine learning frameworks such as Hugging Face’s Transformers. Below is a Python code snippet demonstrating how to load and use Llama 4 Maverick for text generation:
pythonCopyEditimport transformers
Maverick
import torch
model_id = "meta-llama/Llama-4-"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
prompt = "Explain the significance of Llama 3.3 in AI research."
outputs = pipeline(prompt, max_new_tokens=256)
print(outputs[0]["generated_text"])
Este script inicializa o modelo Llama 3.3 e gera uma resposta com base no prompt fornecido. Certifique-se de que o seu ambiente tem os recursos computacionais necessários para lidar com os requisitos do modelo.
Why Llama 4 Maverick is Trending
Llama 4 Maverick has garnered significant attention in the AI community due to its impressive performance and accessibility. Despite having fewer parameters than some of its predecessors, such as the Llama 3.1 405B model, Llama 4 delivers comparable or superior results in various benchmarks. This efficiency makes it a cost-effective solution for organizations seeking high-quality AI capabilities without the associated resource demands.
Moreover, Meta AI’s commitment to open collaboration and responsible AI development has fostered a robust community around Llama 4 Maverick. The model’s open-access approach encourages researchers and developers to contribute to its evolution, leading to continuous improvements and diverse applications.
Features of Llama 4 Maverick
Llama 4 boasts several notable features:
- Proficiência multilingue: Trained on a diverse dataset, Llama 4 Maverick adeptly handles multiple languages, facilitating seamless cross-linguistic interactions.
- Desempenho melhorado: Through optimized training techniques, Llama 4 Maverick achieves high performance across various natural language processing tasks, including text generation, translation, and comprehension.
- Arquitetura eficiente: O modelo utiliza uma arquitetura refinada que equilibra complexidade e eficiência, fornecendo capacidades robustas sem exigências computacionais excessivas.
- Acesso livre: Under the Llama 4 Maverick community license, the model is accessible for both commercial and research purposes, promoting widespread adoption and innovation.
Llama 4 Scout Models
Llama 4 is available in various configurations to cater to different use cases. The primary model features 70 billion parameters, striking a balance between performance and resource requirements. This versatility allows developers to select a model size that aligns with their specific application needs.
For users seeking to explore Llama 4 Scout’s capabilities without local deployment, llamaai.online oferece uma plataforma conveniente para interagir com o modelo diretamente através de uma interface Web.
Dicas e truques
To maximize the benefits of Llama 4 Scout, consider the following recommendations:
Manter-se atualizado: Engage with the Llama 4 Scout community to stay informed about the latest developments, best practices, and updates.
Engenharia rápida: Elaborar instruções claras e específicas para orientar o modelo no sentido de gerar os resultados desejados.
Afinação: For specialized applications, fine-tuning Llama 4 Scout on domain-specific data can enhance its performance and relevance.
Gestão de recursos: Be mindful of the computational resources required to run Llama 4 Scout, especially for the 70B parameter model. Utilizing cloud-based solutions or platforms like llamaai.online pode atenuar as limitações dos recursos locais.
Llama 4 Model Overview
The Llama 4 Scout series represents a cutting-edge collection of multimodal large language models (LLMs) available in 11B and 90B parameter sizes. These models are designed to process both text and image inputs, generating text-based outputs. Optimized for visual tasks such as image recognition, reasoning, and captioning, Llama 4 Scout is highly effective for answering questions about images and exceeds many industry benchmarks, outperforming both open-source and proprietary models in visual tasks.
Objectivos de referência ajustados à instrução
Categoria | Referência | Modalidade | Lhama 3.2 11B | Llama 4 Scout | Claude3 - Haiku | GPT-4o-mini |
---|---|---|---|---|---|---|
Problemas de nível universitário e raciocínio matemático | MMMU (val, CoT de 0 tiros, precisão micro média) | Texto | 50.7 | 60.3 | 50.2 | 59.4 |
MMMU-Pro, Standard (10 opções, teste) | Texto | 33.0 | 45.2 | 27.3 | 42.3 | |
MMMU-Pro, Visão (teste) | Imagem | 27.3 | 33.8 | 20.1 | 36.5 | |
MathVista (testmini) | Texto | 51.5 | 57.3 | 46.4 | 56.7 | |
Compreensão de gráficos e diagramas | ChartQA (teste, CoT 0-shot, precisão relaxada)* | Imagem | 83.4 | 85.5 | 81.7 | – |
Diagrama AI2 (teste)* | Imagem | 91.9 | 92.3 | 86.7 | – | |
DocVQA (teste, ANLS)* | Imagem | 88.4 | 90.1 | 88.8 | – | |
Resposta geral a perguntas visuais | VQAv2 (teste) | Imagem | 75.2 | 78.1 | – | – |
Geral | MMLU (0 remates, CoT) | Texto | 73.0 | 86.0 | 75,2 (5 tiros) | 82.0 |
Matemática | MATH (0 tiros, CoT) | Texto | 51.9 | 68.0 | 38.9 | 70.2 |
Raciocínio | GPQA (0 tiros, CoT) | Texto | 32.8 | 46.7 | 33.3 | 40.2 |
Multilingue | MGSM (0 tiros, CoT) | Texto | 68.9 | 86.9 | 75.1 | 87.0 |
Benchmarks leves ajustados por instrução
Categoria | Referência | Lhama 3.2 1B | Llama 4 Maverick | Gemma 2 2B IT (5 tiros) | Phi-3.5 - Mini IT (5 tiros) |
---|---|---|---|---|---|
Geral | MMLU (5 tiros) | 49.3 | 63.4 | 57.8 | 69.0 |
Avaliação de reescrita aberta (0-shot, rougeL) | 41.6 | 40.1 | 31.2 | 34.5 | |
TLDR9+ (teste, 1 tiro, rougeL) | 16.8 | 19.0 | 13.9 | 12.8 | |
IFEval | 59.5 | 77.4 | 61.9 | 59.2 | |
Matemática | GSM8K (0 tiros, CoT) | 44.4 | 77.7 | 62.5 | 86.2 |
MATH (0 tiros, CoT) | 30.6 | 48.0 | 23.8 | 44.2 | |
Raciocínio | Desafio ARC (0 tiros) | 59.4 | 78.6 | 76.7 | 87.4 |
GPQA (tiro 0) | 27.2 | 32.8 | 27.5 | 31.9 | |
Hellaswag (0-tiro) | 41.2 | 69.8 | 61.1 | 81.4 | |
Utilização de ferramentas | BFCL V2 | 25.7 | 67.0 | 27.4 | 58.4 |
Nexus | 13.5 | 34.3 | 21.0 | 26.1 | |
Contexto longo | InfiniteBench/En.MC (128k) | 38.0 | 63.3 | – | 39.2 |
InfiniteBench/En.QA (128k) | 20.3 | 19.8 | – | 11.3 | |
NIH/Multi-agulha | 75.0 | 84.7 | – | 52.7 | |
Multilingue | MGSM (0 tiros, CoT) | 24.5 | 58.2 | 40.2 | 49.8 |
Especificações principais
Característica | Llama 4 Maverick | Llama 3.2-Vision (90B) |
---|---|---|
Modalidade de entrada | Imagem + Texto | Imagem + Texto |
Modalidade de saída | Texto | Texto |
Contagem de parâmetros | 11B (10,6B) | 90B (88,8B) |
Contexto Comprimento | 128k | 128k |
Volume de dados | 6B pares imagem-texto | 6B pares imagem-texto |
Resposta a perguntas gerais | Apoiado | Apoiado |
Limite de conhecimentos | dezembro de 2023 | dezembro de 2023 |
Línguas suportadas | Inglês, francês, espanhol, português, etc. (tarefas só de texto) | Inglês (apenas tarefas de Imagem+Texto) |
Licença.
Consumo de energia e impacto ambiental
Training Llama 4 models required significant computational resources. The table below outlines the energy consumption and greenhouse gas emissions during training:
Modelo | Horas de formação (GPU) | Consumo de energia (W) | Emissões com base na localização (toneladas de CO2eq) | Emissões baseadas no mercado (toneladas de CO2eq) |
---|---|---|---|---|
Llama 4 Maverick | 245K H100 horas | 700 | 71 | 0 |
Llama 3.2-Vision 90B | 1,77 milhões de horas H100 | 700 | 513 | 0 |
Total | 2.02M | 584 | 0 |
Casos de utilização previstos
Llama 4 has various practical applications, primarily in commercial and research settings. Key areas of use include:
- Resposta visual a perguntas (VQA): O modelo responde a perguntas sobre imagens, o que o torna adequado para casos de utilização como a pesquisa de produtos ou ferramentas educativas.
- Documento VQA (DocVQA): Pode compreender a apresentação de documentos complexos e responder a perguntas com base no conteúdo do documento.
- Legenda da imagem: Gera automaticamente legendas descritivas para imagens, ideais para redes sociais, aplicações de acessibilidade ou geração de conteúdos.
- Recuperação de Imagem-Texto: Faz corresponder as imagens ao texto correspondente, útil para os motores de busca que trabalham com dados visuais e textuais.
- Ligação à terra visual: Identifica regiões específicas de uma imagem com base em descrições de linguagem natural, melhorando a compreensão do conteúdo visual por parte dos sistemas de IA.
Segurança e ética
Llama 4 Scout is developed with a focus on responsible use. Safeguards are integrated into the model to prevent misuse, such as harmful image recognition or the generation of inappropriate content. The model has been extensively tested for risks associated with cybersecurity, child safety, and misuse in high-risk domains like chemical or biological weaponry.
The following table highlights some of the key benchmarks and performance metrics for Llama 4 Scout:
Tarefa/Capacidade | Referência | Lhama 3.2 11B | Llama 4 Maverick |
---|---|---|---|
Compreensão da imagem | VQAv2 | 66.8% | 73.6% |
Raciocínio visual | MMMU | 41.7% | 49.3% |
Compreensão do gráfico | GráficoQA | 83.4% | 85.5% |
Raciocínio matemático | MathVista | 51.5% | 57.3% |
Implantação responsável
Meta has provided tools such as Llama Guard and Prompt Guard to help developers ensure that Llama 4 Scout models are deployed safely. Developers are encouraged to adopt these safeguards to mitigate risks related to safety and misuse, making sure their use cases align with ethical standards.
In conclusion, Llama 4 Scout represents a significant advancement in multimodal language models. With robust image reasoning and text generation capabilities, it is highly adaptable for diverse commercial and research applications while adhering to rigorous safety and ethical guidelines.