Online Llama 4 Chat
Discover free online Llama 4 Maverick chat or Scout, insightful AI education, and download local large model codes.

Free Online Llama 4 Chat
Llama 4 Maverick is a cutting-edge large language model (LLM) developed by Meta AI, designed to advance natural language understanding and generation across multiple languages. With 70 billion parameters, Llama 4 Scout offers enhanced performance and efficiency, making it a valuable tool for both commercial and research applications.

LLaMA 4 Scout is an updated version of the previous LLaMA 3.2 405B model, building upon its core architecture while introducing several improvements. While both versions utilize Meta AI’s advanced natural language processing technology, LLaMA 4 Scout offers enhanced response accuracy, faster processing speeds, and better adaptability to user input. Additionally, 4 Maverick includes improved learning capabilities, allowing it to provide more contextually relevant answers compared to 3.2 405B, making it a more refined and user-friendly tool for personal, educational, and business applications.
무료 온라인 라마 3.3 채팅
무료 온라인 라마 3.2 채팅
무료 온라인 라마 3.1 채팅
더 많은 라마 AI 도구
Frequently Asked Questions for Llama 4
Q1: What is Llama 4 Maverick?
A1: Llama 4 Maverick is a state-of-the-art large language model (LLM) developed by Meta AI, designed for natural language understanding, text generation, and multilingual support.
Q2: How can I access Llama 4 Maverick for free?
A2: You can use Llama 4 Maverick for free on platforms like llamaai.online로 이동하여 사용하기 쉬운 채팅 인터페이스를 제공합니다.
Q3: Does Llama 4 Mavericksupport multiple languages?
A3: Yes, Llama 4 Maverick is trained on multiple languages, including English, Spanish, French, German, Portuguese, Hindi, and more.
Q4: How does Llama 4 Maverick compare to ChatGPT?
A4: Llama 4 competes with models like ChatGPT by offering advanced AI-powered responses, multilingual support, and open-source accessibility.
Q5: What makes Llama 4 better than previous versions?
A5: Llama 4 improves on previous versions with 향상된 학습 데이터, 더 나은 추론 기능, 더 효율적인 성능.
Q6: Can I use Llama 4 Maverick for professional writing?
A6: Yes, Llama 4 Maverick is an excellent tool for content creation, blog writing, SEO optimization, and more.
Q7: Is Llama 4 Maverick free for commercial use?
A7: While Llama 4 is open-source, some usage restrictions may apply. Check the 공식 라이선스 약관 를 상업적으로 사용하기 전에 확인하세요.
Q8: What kind of AI tasks can Llama 4 Maverick handle?
A8: Llama 4 excels at 텍스트 생성, 번역, 요약, 창의적 글쓰기, 대화형 AI.
Q9: How do I integrate Llama 4 Maverick into my applications?
A9: Developers can integrate Llama 4 using machine learning frameworks like 허깅 페이스의 트랜스포머.
Q10: Does Llama 4 Maverick require powerful hardware?
A10: Llama 3.3을 로컬에서 실행하려면 다음이 필요합니다. 고성능 GPU와 같은 클라우드 기반 솔루션은 llamaai.online 값비싼 하드웨어 없이도 사용할 수 있습니다.
Q11: Can Llama 4 Maverick write code?
A11: Yes, Llama 4 can generate and debug code in Python, JavaScript, Java, C++ 및 기타 프로그래밍 언어.
Q12: How accurate is Llama 4?
A12: Llama 4 has been trained on a 대규모 데이터 세트 를 사용하여 정확도를 높이되, 중요한 애플리케이션의 경우 항상 정보를 확인합니다.
Q13: Can I fine-tune Llama 4 Maverick for specific tasks?
A13: Yes, advanced users can fine-tune Llama 4 on custom datasets for specialized applications.
Q14: Is there a limit to how much I can use Llama 4 Maverick?
A14: 다음과 같은 플랫폼 llamaai.online 모든 사용자에게 공정한 액세스를 보장하기 위해 사용 제한이 있을 수 있습니다.
Q15: Does Llama 4 Scout have ethical safeguards?
A15: 예, Meta AI는 콘텐츠 중재 오용을 방지하기 위한 안전장치를 마련했습니다.
Q16: Can Llama 4 Scout generate images?
A16: No, Llama 4 Scout is a text-based AI model. For image generation, consider models like DALL-E 또는 안정적 확산.
Q17: How can I improve responses from Llama 4 Scout?
A17: 사용 명확하고 상세한 안내 응답 품질을 개선합니다. 더 나은 결과를 위해 다양한 프롬프트를 실험해 보세요.
Q18: Is Llama 4 Scout available as an API?
A18: 예, 개발자는 Llama 4 API AI 기반 애플리케이션에 적합합니다.
Q19: Can Llama 4 Scout be used for chatbots?
A19: Absolutely! Llama 4 Scout is a great choice for AI 챗봇, 가상 비서 및 고객 지원 애플리케이션.
Q20: Where can I stay updated on Llama 4 Scout?
A20: 메타 AI의 공식 채널 를 방문하여 llamaai.online 에서 업데이트 및 커뮤니티 토론을 확인하세요.

Latest Llama 4 News

라마 3 VS 제미니: AI 코딩 도구의 종합적인 비교

라마 3와 ChatGPT: AI 코딩 도구의 종합적인 비교

LLaMA 3 모델을 훈련하는 방법: 종합 가이드

라마 3.1 405B VS 클로드 3.5 소네트

라마 3.1 405B VS 젬마 2: 종합적인 비교

라마 3.1 405B와 GPT-4o: 종합적인 비교
Online Llama 4 Chat: An In-depth Guide
LLaMA 4 is the latest AI model developed by Meta AI, offering users free online chat capabilities. This technology represents a leap in natural language processing and interaction, providing advanced responses to a wide array of user queries.
What is Llama 4 Maverick?
Released on December 6, 2024, Llama 4 Maverick is a state-of-the-art LLM that builds upon its predecessors by incorporating advanced training techniques and a diverse dataset comprising over 15 trillion tokens. This extensive training enables Llama 4 to excel in various natural language processing tasks, including text generation, translation, and comprehension. The model supports multiple languages, such as English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai, catering to a global user base.
How to Use Llama 4 Maverick
Accessing and utilizing Llama 4 Maverick is straightforward, especially through platforms like llamaai.online, which offer free online chat interfaces powered by Llama 4 Maverick. These platforms provide an intuitive environment for users to interact with the model without the need for extensive technical knowledge.
For developers interested in integrating Llama 3.3 into their applications, the model is compatible with popular machine learning frameworks such as Hugging Face’s Transformers. Below is a Python code snippet demonstrating how to load and use Llama 4 Maverick for text generation:
파이썬 복사 편집import transformers
Maverick
import torch
model_id = "meta-llama/Llama-4-"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
prompt = "Explain the significance of Llama 3.3 in AI research."
outputs = pipeline(prompt, max_new_tokens=256)
print(outputs[0]["generated_text"])
이 스크립트는 Llama 3.3 모델을 초기화하고 제공된 프롬프트에 따라 응답을 생성합니다. 사용 중인 환경에 모델의 요구 사항을 처리하는 데 필요한 컴퓨팅 리소스가 있는지 확인하세요.
Why Llama 4 Maverick is Trending
Llama 4 Maverick has garnered significant attention in the AI community due to its impressive performance and accessibility. Despite having fewer parameters than some of its predecessors, such as the Llama 3.1 405B model, Llama 4 delivers comparable or superior results in various benchmarks. This efficiency makes it a cost-effective solution for organizations seeking high-quality AI capabilities without the associated resource demands.
Moreover, Meta AI’s commitment to open collaboration and responsible AI development has fostered a robust community around Llama 4 Maverick. The model’s open-access approach encourages researchers and developers to contribute to its evolution, leading to continuous improvements and diverse applications.
Features of Llama 4 Maverick
Llama 4 boasts several notable features:
- 다국어 능력: Trained on a diverse dataset, Llama 4 Maverick adeptly handles multiple languages, facilitating seamless cross-linguistic interactions.
- 향상된 성능: Through optimized training techniques, Llama 4 Maverick achieves high performance across various natural language processing tasks, including text generation, translation, and comprehension.
- 효율적인 아키텍처: 이 모델은 복잡성과 효율성의 균형을 맞추는 정교한 아키텍처를 채택하여 과도한 계산 요구 없이 강력한 기능을 제공합니다.
- 오픈 액세스: Under the Llama 4 Maverick community license, the model is accessible for both commercial and research purposes, promoting widespread adoption and innovation.
Llama 4 Scout Models
Llama 4 is available in various configurations to cater to different use cases. The primary model features 70 billion parameters, striking a balance between performance and resource requirements. This versatility allows developers to select a model size that aligns with their specific application needs.
For users seeking to explore Llama 4 Scout’s capabilities without local deployment, llamaai.online 는 웹 인터페이스를 통해 모델과 직접 상호 작용할 수 있는 편리한 플랫폼을 제공합니다.
팁 및 유용한 정보
To maximize the benefits of Llama 4 Scout, consider the following recommendations:
최신 소식 받기: Engage with the Llama 4 Scout community to stay informed about the latest developments, best practices, and updates.
프롬프트 엔지니어링: 명확하고 구체적인 프롬프트를 작성하여 모델이 원하는 결과물을 생성하도록 안내합니다.
미세 조정: For specialized applications, fine-tuning Llama 4 Scout on domain-specific data can enhance its performance and relevance.
리소스 관리: Be mindful of the computational resources required to run Llama 4 Scout, especially for the 70B parameter model. Utilizing cloud-based solutions or platforms like llamaai.online 를 사용하면 로컬 리소스 제약을 완화할 수 있습니다.
Llama 4 Model Overview
The Llama 4 Scout series represents a cutting-edge collection of multimodal large language models (LLMs) available in 11B and 90B parameter sizes. These models are designed to process both text and image inputs, generating text-based outputs. Optimized for visual tasks such as image recognition, reasoning, and captioning, Llama 4 Scout is highly effective for answering questions about images and exceeds many industry benchmarks, outperforming both open-source and proprietary models in visual tasks.
비전 인스트럭션에 맞게 조정된 벤치마크
카테고리 | 벤치마크 | 모달리티 | Llama 3.2 11B | Llama 4 Scout | Claude3 - 하이쿠 | GPT-4o-mini |
---|---|---|---|---|---|---|
대학 수준의 문제와 수학적 추론 | MMMU(밸, 0샷 CoT, 마이크로 평균 정확도) | 텍스트 | 50.7 | 60.3 | 50.2 | 59.4 |
MMMU-Pro, 표준(10옵션, 테스트) | 텍스트 | 33.0 | 45.2 | 27.3 | 42.3 | |
MMMU-Pro, 비전(테스트) | 이미지 | 27.3 | 33.8 | 20.1 | 36.5 | |
MathVista(테스트미니) | 텍스트 | 51.5 | 57.3 | 46.4 | 56.7 | |
차트 및 다이어그램 이해 | 차트QA(테스트, 0샷 CoT, 완화된 정확도)** | 이미지 | 83.4 | 85.5 | 81.7 | – |
AI2 다이어그램(테스트)* | 이미지 | 91.9 | 92.3 | 86.7 | – | |
DocVQA(테스트, ANLS)* | 이미지 | 88.4 | 90.1 | 88.8 | – | |
일반 시각적 질문 답변 | VQAv2(테스트) | 이미지 | 75.2 | 78.1 | – | – |
일반 | MMLU(0샷, CoT) | 텍스트 | 73.0 | 86.0 | 75.2(5샷) | 82.0 |
수학 | 수학(0샷, CoT) | 텍스트 | 51.9 | 68.0 | 38.9 | 70.2 |
추론 | GPQA(0샷, CoT) | 텍스트 | 32.8 | 46.7 | 33.3 | 40.2 |
다국어 | MGSM(0샷, CoT) | 텍스트 | 68.9 | 86.9 | 75.1 | 87.0 |
경량 인스트럭션 조정 벤치마크
카테고리 | 벤치마크 | Llama 3.2 1B | Llama 4 Maverick | 젬마 2 2B IT(5샷) | Phi-3.5 - 미니 IT(5샷) |
---|---|---|---|---|---|
일반 | MMLU(5샷) | 49.3 | 63.4 | 57.8 | 69.0 |
오픈 리라이트 평가(0샷, 루즈엘) | 41.6 | 40.1 | 31.2 | 34.5 | |
TLDR9+(테스트, 1샷, 루즈엘) | 16.8 | 19.0 | 13.9 | 12.8 | |
IFEval | 59.5 | 77.4 | 61.9 | 59.2 | |
수학 | GSM8K(0샷, CoT) | 44.4 | 77.7 | 62.5 | 86.2 |
수학(0샷, CoT) | 30.6 | 48.0 | 23.8 | 44.2 | |
추론 | ARC 챌린지(0샷) | 59.4 | 78.6 | 76.7 | 87.4 |
GPQA(0샷) | 27.2 | 32.8 | 27.5 | 31.9 | |
헬라스웨그 (0샷) | 41.2 | 69.8 | 61.1 | 81.4 | |
도구 사용 | BFCL V2 | 25.7 | 67.0 | 27.4 | 58.4 |
넥서스 | 13.5 | 34.3 | 21.0 | 26.1 | |
긴 컨텍스트 | InfiniteBench/En.MC (128k) | 38.0 | 63.3 | – | 39.2 |
InfiniteBench/En.QA (128k) | 20.3 | 19.8 | – | 11.3 | |
NIH/멀티 니들 | 75.0 | 84.7 | – | 52.7 | |
다국어 | MGSM(0샷, CoT) | 24.5 | 58.2 | 40.2 | 49.8 |
주요 사양
기능 | Llama 4 Maverick | 라마 3.2-Vision(90B) |
---|---|---|
입력 방식 | 이미지 + 텍스트 | 이미지 + 텍스트 |
출력 양식 | 텍스트 | 텍스트 |
매개변수 수 | 11B (10.6B) | 90억 달러(888억) |
컨텍스트 길이 | 128k | 128k |
데이터 볼륨 | 6B 이미지-텍스트 쌍 | 6B 이미지-텍스트 쌍 |
일반 질문 답변 | 지원 | 지원 |
지식 차단 | 2023년 12월 | 2023년 12월 |
지원 언어 | 영어, 프랑스어, 스페인어, 포르투갈어 등(텍스트 전용 작업) | 영어(이미지+텍스트 작업만 해당) |
라이선스.
에너지 소비 및 환경 영향
Training Llama 4 models required significant computational resources. The table below outlines the energy consumption and greenhouse gas emissions during training:
모델 | 교육 시간(GPU) | 전력 소비량(W) | 위치 기반 배출량(CO2eq 톤) | 시장 기반 배출량(CO2eq 톤) |
---|---|---|---|---|
Llama 4 Maverick | 245K H100시간 | 700 | 71 | 0 |
Llama 3.2-Vision 90B | 177만 H100시간 | 700 | 513 | 0 |
합계 | 2.02M | 584 | 0 |
의도된 사용 사례
Llama 4 has various practical applications, primarily in commercial and research settings. Key areas of use include:
- 시각적 질문 답변(VQA): 이 모델은 이미지에 대한 질문에 답변하므로 제품 검색이나 교육용 도구와 같은 사용 사례에 적합합니다.
- 문서 VQA(DocVQA): 복잡한 문서의 레이아웃을 이해하고 문서 내용을 기반으로 질문에 답할 수 있습니다.
- 이미지 캡션: 소셜 미디어, 접근성 애플리케이션 또는 콘텐츠 생성에 이상적인 이미지에 대한 설명 캡션을 자동으로 생성합니다.
- 이미지-텍스트 검색: 이미지를 해당 텍스트와 일치시켜 시각 및 텍스트 데이터로 작업하는 검색 엔진에 유용합니다.
- 시각적 접지: 자연어 설명을 기반으로 이미지의 특정 영역을 식별하여 AI 시스템의 시각적 콘텐츠에 대한 이해를 높입니다.
안전 및 윤리
Llama 4 Scout is developed with a focus on responsible use. Safeguards are integrated into the model to prevent misuse, such as harmful image recognition or the generation of inappropriate content. The model has been extensively tested for risks associated with cybersecurity, child safety, and misuse in high-risk domains like chemical or biological weaponry.
The following table highlights some of the key benchmarks and performance metrics for Llama 4 Scout:
작업/기능 | 벤치마크 | Llama 3.2 11B | Llama 4 Maverick |
---|---|---|---|
이미지 이해 | VQAv2 | 66.8% | 73.6% |
시각적 추론 | MMMU | 41.7% | 49.3% |
차트 이해 | ChartQA | 83.4% | 85.5% |
수학적 추론 | MathVista | 51.5% | 57.3% |
책임감 있는 배포
Meta has provided tools such as Llama Guard and Prompt Guard to help developers ensure that Llama 4 Scout models are deployed safely. Developers are encouraged to adopt these safeguards to mitigate risks related to safety and misuse, making sure their use cases align with ethical standards.
In conclusion, Llama 4 Scout represents a significant advancement in multimodal language models. With robust image reasoning and text generation capabilities, it is highly adaptable for diverse commercial and research applications while adhering to rigorous safety and ethical guidelines.